REGIONE PUGLIA

P.O. FESR 2007/2013

Asse VI - Competitività dei sistemi produttivi ed occupazione Azione 6.2.2 - Iniziative per "Interventi volti a migliorare l'efficienza gestionale dei sistemi infrastrutturali delle aree di insediamento industriale di competenza dei consorzi per le aree di sviluppo industriale"

Area grandi medie industrie Allargamento area produttiva PROGETTO ESECUTIVO

D. - Torri faro e illuminazione strada di collegamento S.P. 48 - S.S. 100

TITOLO:

R03.1_RELAZIONE GEOTECNICA FONDAZIONI

PROGETTISTA:	Ing. Carroccia Giancarlo
RUP:	geom. Vettore Mario

0	ESECUTIVO	Novembre 2012
0	DEFINITIVO	Settembre 2012
0	PRELIMINARE	Giugno 2012
Rev.	Descrizione	Data

RELAZIONE GEOTECNICA

INDICE

<u>PREMESSA</u>	Pag. 2
1. <u>RIFERIMENTI NORMATIVI</u>	~~ 2
2. <u>CONSISTENZA DELLE OPERE</u>	~~ 2
3. PARAMETRI FISICO-MECCANICI	~~ 2
4. <u>TIPOLOGIA DI FONDAZIONE</u>	" 3
5. <u>CRITERI DI DIMENSIONAMENTO</u>	" 3
6. <u>METODO DI CALCOLO</u>	" 4
7. RISULTATI	" 4

PREMESSA

Per predisporre la riqualificazione della strada di collegamento tra la S.P. n° 48 e la S.S. n° 100 (Comuni di Taranto e di Statte), è stato eseguito lo studio geologico prescritto dalle norme vigenti, con esiti riprodotti ed analizzati negli appositi Elaborati (GEO1 GEO RE 01 - GEO1 GEO PL 01 - GEO1 GEO PF 01 - GEO2 GEO RE 01), parte integrante degli atti progettuali. Gli stessi sono stati utilizzati per la scelta della tipologia e dei criteri di dimensionamento geotecnico dei manufatti coinvolti, come discusso nel seguito, rinviando ai documenti specifici per lo sviluppo analitico dei calcoli statici.

1. RIFERIMENTI NORMATIVI

- D.M. Infrastrutture ed Interno 14/1/2008.
- Circolare 2 Febbraio 2009, n. 617, Ministero delle Infrastrutture e dei Trasporti.

2. CONSISTENZA DELLE OPERE

Gli aspetti qui considerati riguardano gli elementi di fondazione di n° 4 "torri-faro", da installare nella zona centrale di ciascuna delle rotatorie (indicate con le sigle A-B-C-D) previste lungo il tracciato viario in adeguamento.

3. PARAMETRI FISICO-MECCANICI

Desunti dallo studio citato in precedenza, sono riprodotti negli schemi acclusi, completi dalla legenda esplicativa della simbologia.

ROTATORIA A

 $\gamma = 1.8 \text{ t/m}^3$

 $\phi = 34^{\circ}$

 $E_s = 1.000 \text{ kg/cm}^2$

v = 0.35

 $G = 370 \text{ kg/cm}^2$

Zona sismica 3

Categoria topografica T1 Tab. 3.2.IV D.M. 14/1/2008

Categoria di sottosuolo E Tab. 3.2.II D.M. 14/1/2008

SIMBOLOGIA

 γ = Peso di Volume

φ = Angolo d'Attrito Interno

 E_s = Modulo di Deformazione

 ν = Coefficiente di Poisson

G = Modulo di Taglio

ROTATORIE B-D

 $\gamma = 2.2 \text{ t/m}^3$

 $C_k = 0.79 \text{ kg/cm}^2$

 $\varphi_k = 50^\circ$

 $E_s = 10.700 \text{ kg/cm}^2$

v = 0.35

 $G = 3.900 \text{ kg/cm}^2$

Zona sismica 3

Categoria topografica T1 Tab. 3.2.IV D.M. 14/1/2008

Categoria di sottosuolo A Tab. 3.2.II D.M. 14/1/2008

SIMBOLOGIA

γ = Peso di Volume

 C_k = Coesione "caratteristica"

 φ_k = Angolo d'Attrito Interno "caratteristico"

 E_s = Modulo di Deformazione

v =Coefficiente di Poisson

G = Modulo di Taglio

ROTATORIA C

```
\begin{split} \gamma &= 1,7 \text{ t/m}^3 \\ C_k &= 0,55 \text{ kg/cm}^2 \\ \phi_k &= 34^\circ \\ E_s &= 1.500 \text{ kg/cm}^2 \\ v &= 0,35 \\ G &= 560 \text{ kg/cm}^2 \\ Zona \text{ sismica } 3 \\ Categoria \text{ topografica T1 Tab. } 3.2.\text{IV D.M. } 14/1/2008 \\ Categoria \text{ di sottosuolo A Tab. } 3.2.\text{II D.M. } 14/1/2008 \end{split}
```

SIMBOLOGIA

γ = Peso di Volume

 C_k = Coesione "caratteristica"

 φ_k = Angolo d'Attrito Interno "caratteristico"

 E_s = Modulo di Deformazione

v =Coefficiente di Poisson

G = Modulo di Taglio

4. TIPOLOGIA DI FONDAZIONE

Tenuto conto delle peculiarità dei geomateriali di supporto, nonché dell'entità delle azioni indotte a livello del piano di posa, sono state prescelte membrature dirette isolate (plinti), incassate in scavi a sezione ristretta e realizzate con getto del cls contro terra.

5. CRITERI DI DIMENSIONAMENTO

La Capacità Portante ultima netta è stata valutata da (il pedice k indica la "proprietà caratteristica" generica delle N.T.C./2008):

 $\begin{aligned} q_{uk} &= (C_k \cdot N_c \cdot \zeta_c \cdot \zeta_{ci} + \gamma_k \cdot t \cdot N_q \cdot \zeta_q \cdot \zeta_{qi} + \gamma_k \cdot b' \cdot N_\gamma \cdot \zeta_\gamma \cdot \zeta_{\gamma ii}/2) \cdot b'/b - \gamma_{1k} \cdot t, \\ con \ (immutati \ i \ simboli \ restanti): \end{aligned}$

- C_k = Coesione;
- N_c , N_q , N_γ = Fattori di capacità portante;
- ζ_c , ζ_q , ζ_{γ} = " forma;
- ζ_{ci} , ζ_{qi} , $\zeta_{\gamma i}$ = "d'inclinazione;
- γ_k , γ_{1k} = Peso di Volume, rispettivamente, dei terreni sottostanti e sovrastanti al piano di posa;
- t = Profondità d'interramento;
- b' = Larghezza d'impronta ridotta;

Nella relazione precedente, è:

```
N_c = (N_q - 1)ctg\varphi_k;
```

 ϕ_k = Angolo d'Attrito Interno;

$$N_q = e^{\pi tg\phi}_k tg^2 (45^\circ + \phi_k/2);$$

 $N_{\gamma} = 2(N_{q} + 1)tg\varphi_{k};$

 $\zeta_c = 1 + (b'/L')(N_0/N_c);$

L' = Lunghezza d'impronta ridotta;

$$\zeta_q = 1 + (b'/L')tg\varphi_k;$$

$$\zeta_{\gamma} = 1 - 0.4b'/L';$$

$$\zeta_{ci} = \zeta_{qi} - (1 - \zeta_{qi})/N_c tg \varphi_k;$$

$$\zeta_{qi} = [1 - R_{XY}/(R_Z + b' \cdot L' \cdot C_k \cdot ctg\varphi_k)]^m;$$

 R_{XY} = Componente orizzontale del carico;

 R_Z = Risultante verticale;

b' = b - 2e_b ("b" è la larghezza reale ed "e_b" l'eccentricità in direzione di "b");

```
\begin{split} L' &= L - 2e_L \text{ ("L" = lunghezza reale; "e_L" = eccentricità in direzione di "L");} \\ \zeta_{\gamma i} &= \left[1 - R_{XY}/(R_Z + b' \cdot L' \cdot C_k \cdot ctg\phi_k)\right]^{m+1}; \\ m &= m_L cos^2\theta + m_b sen^2\theta; \\ m_L &= (2 + L'/b')/(1 + L'/b') \\ m_b &= (2 + b'/L')/(1 + b'/L'); \\ \theta &= artg(R_X/R_Y); \end{split}
```

 R_X , R_Y = Componenti di " R_{XY} " in direzione di "L" e di "b".

Le verifiche sono state eseguite tramite le disequazioni:

```
q_{uk} \cdot b' \cdot L' \geq E_d
```

$$[C_k + (R_Z/b' \cdot L') \cdot tg\phi_k] \cdot (b' \cdot L') \ge E_d,$$

ove E_d è il valore di progetto dell'azione generica.

Gli esiti sono stati accettati se ammissibili, per le sovrastrutture, gli spostamenti, dati per le deflessioni "elastiche", in un punto "caratteristico" (baricentro dell'area ridotta b'·L'), da:

$$w = q_e \cdot b' \cdot (1 - v_k^2) \cdot I_w / E_{sk},$$

con:

 q_e = Tensione d'esercizio (= $R_z/b' \cdot L'$);

I_w = Coefficiente d'Influenza (= 0,82+ 0,5592·ln L'/b').

Le rotazioni sono state desunte da:

$$\begin{split} tg\theta_{L} &= (M_{L}/L'^{2}\cdot b')\cdot [(1-\nu_{k}^{2})/E_{sk}]\cdot I_{m}, \\ tg\theta_{b} &= (M_{b}/b'^{2}\cdot L')\cdot [(1-\nu_{k}^{2})/E_{sk}]\cdot I_{m}, \end{split}$$

- essendo:
 - θ_L = Angolo di rotazione del piano di posa, sull'orizzontale, in direzione di L (rad.);

 - M_L , M_b = Momenti lungo L e b;
 - $I_m = 5,0773 1/1,3132 \cdot (L'/b')$ (Coefficiente d'Influenza per la rotazione).

Per il dimensionamento statico, il Modulo di Sottofondo è stato ricavato da $k_s' = E_{sk}/[b' \cdot (1 - v_k^2) \cdot I_w]$ (in unità di misura congruenti).

6. METODO DI CALCOLO

E' stato utilizzato l'Approccio 2 (A1+M1+R3) N.T.C./2008.

7. RISULTATI

A) TORRI-FARO H = 25 m

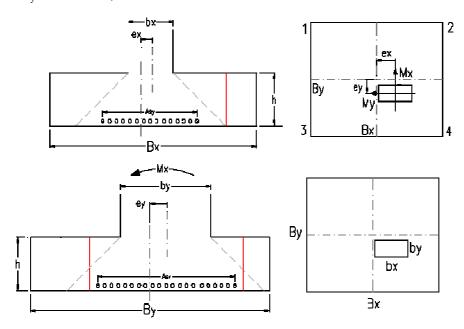
A.1) Geometria (Fig. 1)

Plinto quadrato, con le seguenti dimensioni.

- Larghezza: b = 4,00 m.
- Lunghezza: L = 4,00 m.
- Altezza: H = 3,00 m.
- Profondità d'interramento: t = 3.00 m.

A.2) Azioni

A.2.1) Dalla relazione di calcolo statico (Elaborato R03 di progetto), per le verifiche allo S.L.U. è:


- Carico verticale: N = 105.120 N = 10,719 t;
- Momenti:

$$M_x = 37.810 \text{ N} \cdot \text{m} = 3,856 \text{ t} \cdot \text{m};$$

 $M_y = 103.096 \text{ N} \cdot \text{m} = 10,513 \text{ t} \cdot \text{m};$

• Carichi orizzontali:

$$T_x = 12.000 \text{ N} = 1,224 \text{ t};$$

 $T_y = 844 \text{ N} = 0.086 \text{ t}.$

PLINTI TORRI H = 25 m						
GEOMETRIA						
Dimensioni	(cm)	bx	by	Bx	Ву	
		83	83	400	400	
Eccentricità pilastro	(cm)	ex	ey	Pilastro	$\beta = 1,15$	
		0	0	interno		
H plinto	(cm)	300				
copriferro	(cm)	4				
d	(cm)	296				
PRESSIONI						
Pressioni sul terreno		σ_1	σ_2	σ_3	σ_4	
MPa		0,104	0,097	0,085	0,078	

Fig. 1: Schema geometrico

A.2.2) Peso proprio plinto

 $P_p = b{\cdot}L{\cdot}H{\cdot}(\gamma_{cls} - \gamma_t),$

con

 γ_{cls} = Peso di volume del calcestruzzo (= 2,5 t/m³);

 γ_t = Peso di volume del terreno sostituito (= 1,8 t/m³, per Rotatoria A, = 2,2 t/m³, per Rotatorie B-D).

A.2.3) Momenti di trasporto

 $M_{xt} = T_y \cdot H = 0.086x3.00 = 0.258 \text{ t} \cdot \text{m}.$

 $M_{yt} = T_x \cdot H = 1,224x3,00 = 3,720 \text{ t} \cdot \text{m}.$

A.2.4) Coefficienti parziali (Tabb. 6.2.I-6.2.II-6.4.I D.M. 14/1/2008)

- (A1) $\gamma_{Qi} = 1,5$ (applicato solo ai Momenti ed alle azioni orizzontali, perché sfavorevoli).
- (M1) $\gamma_{\rm M} = 1.0$.
- (R3) Capacità portante $\gamma_R = 2.3$; Scorrimento $\gamma_R = 1.1$.

A.3) Rotatoria A

A.3.1) Azioni totali

• Carico verticale:

$$N' = N + P_p = 10,719 + 4,00x4,00x3,00x(2,5 - 1,8) = 44,319 t.$$

• Momenti:

$$M_x' = (M_x + M_{xt}) \cdot \gamma_{Qi} = (3,856 + 0,258)x1,5 = 6,171 \text{ t·m};$$

 $M_y' = (M_y + M_{yt}) \cdot \gamma_{Qi} = (10,513 + 3,720)x1,5 = 21,350 \text{ t·m}.$

• Carichi orizzontali:

$$T_{x}' = T_{x} \cdot \gamma_{Qi} = 1,224x1,5 = 1,836 t;$$

 $T_{y}' = T_{y} \cdot \gamma_{Qi} = 0,086x1,5 = 0,129 t.$

A.3.2) <u>Verifiche</u>

• Dati di ingresso:

$\gamma_1 = 1.8 \text{ t/m}^3$	$\gamma_2 = 1.8 \text{ t/m}^3$	$C = 0 t/m^2$
$\varphi = 34^{\circ}$	v = 0.35	$E_s = 10.000 \text{ t/m}^2$
b = 4,00 m	L = 4,00 m	t = 3,00 m
N = 44,319 t	$T_b = 1,836 t$	$T_L = 0.129 t$
$M_b = 6.171 \text{ t} \cdot \text{m}$	$M_L = 21,350 \text{ t} \cdot \text{m}$	$e_b = 0.139 \text{ m}$
$e_L = 0.482 \text{ m}$	b' = 3,72 m	L' = 3,04 m

• Calcolo:

• Verifica Capacità portante ultima netta (soluzione Terzaghi):

$$q_u = \ \gamma_1 \cdot t \cdot N_q \cdot \zeta_q \cdot \zeta_{qi} + \gamma_2 \cdot b' \cdot N_Y \cdot \zeta_Y \cdot \zeta_{Yi} / 2 - \gamma_1 \cdot t = \ 329,4 \ t / m^2.$$

Tensione media:

$$q_{e Med} = 3,92 \text{ t/m}^2$$
.

Tensione massima:

$$q_{Max} = 8.05 \text{ t/m}^2$$
.

Verifica:

$$q_u \cdot b' \cdot L'/N' = 329.4x3.72x3.04/44.319 = 84 > 2.3$$
 (Verificato).

• Verifica allo scorrimento:

$$\begin{split} &[(R_z/b'\cdot L')\cdot tg\phi_k]\cdot (b'\cdot L') = 29,89 \ t; \\ &R_{xy} = (T_b^2 + T_L^2)^{0.5} = 1,84 \ t; \\ &29,89/1,84 = 16 > 1,1 \quad (Verificato). \end{split}$$

• Cedimento:

$$\begin{split} I_w &= 0.5592 \cdot \ln(L'/b') + 0.82 = 0.933; \\ w &= q_e \cdot b' \cdot (1 - v^2) \cdot I_w / E_s = 0.12 \text{ cm} \quad \text{(Accettabile)}. \end{split}$$

• Rotazioni:

$$\begin{split} I_m &=~5,0773 - 1/1,3132 \cdot (L'/b') = & ~4,14; \\ tg\theta_L &=~(M_I/L'^2 \cdot b') \cdot [(1 - {\nu_k}^2)/E_{sk}] \cdot I_m = 0,003; \\ tg\theta_b &=~(M_b/b'^2 \cdot L') \cdot [(1 - {\nu_k}^2)/E_{sk}] \cdot I_m = 0,0005; \end{split}$$

$$\theta_L = 0.003133505 \text{ rad.} = 0.18^{\circ} \text{ (Accettabile)};$$

 $\theta_b = 0.000491996 \text{ rad.} = 0.03^{\circ} \text{ (Accettabile)}.$

• Modulo di Sottofondo:

$$k_s = q_{e \text{ Med}} / w = 4,34 \text{ kg/cm}^3.$$

A.4) Rotatorie B-D

A.4.1) Azioni totali

• Carico verticale:

$$N' = N + P_p = 10,719 + 4,00x4,00x3,00x(2,5 - 2,2) = 25,119 t.$$

• Momenti:

$$M_x' = (M_x + M_{xt}) \cdot \gamma_{Qi} = (3,856 + 0,258)x1,5 = 6,171 \text{ t·m};$$

 $M_y' = (M_y + M_{yt}) \cdot \gamma_{Qi} = (10,513 + 3,720)x1,5 = 21,350 \text{ t·m}.$

• Carichi orizzontali:

$$T_{x'} = T_{x} \cdot \gamma_{Qi} = 1,224x1,5 = 1,836 t;$$

 $T_{y'} = T_{y} \cdot \gamma_{Qi} = 0,086x1,5 = 0,129 t.$

A.4.2) Verifiche

• Dati di ingresso:

$\gamma_1 = 2.2 \text{ t/m}^3$	$\gamma_2 = 2.2 \text{ t/m}^3$	$C = 7.9 \text{ t/m}^2$
$\varphi = 50^{\circ}$	v = 0.35	$E_s = 107.000 \text{ t/m}^2$
b = 4,00 m	L = 4,00 m	t = 3,00 m
N = 25,119	$T_b = 1,836$	$T_L = 0.129$
$M_b = 6,171 \text{ t} \cdot \text{m}$	$M_L = 21,35 \text{ t} \cdot \text{m}$	$e_b = 0.25 \text{ m}$
$e_L = 0.85 \text{ m}$	b' = 3.51 m	L' = 2,30 m

• Calcolo:

$N_c =$	266,88	$N_q =$	319,06	$N_Y =$	762,86
$\zeta_{\rm c} =$	2,82	$\zeta_q =$	2,82	$\zeta_{\rm Y}$ =	0,39
ζ_{ci} =	0,96	ζ_{qi} =	0,96	ζ_{Yi} =	0,94

• Verifica Capacità portante ultima netta (soluzione Terzaghi):

$$q_u = C \cdot N_c \cdot \zeta_c \cdot \zeta_{ci} + \gamma_1 \cdot t \cdot N_q \cdot \zeta_q \cdot \zeta_{qi} + \gamma_2 \cdot b \cdot N_\gamma \cdot \zeta_Y \cdot \zeta_{yi} / 2 - \gamma_1 \cdot t = 12.516.2 \text{ t/m}^2.$$

Tensione media:

$$q_{e \text{ Med}} = 3.11 \text{ t/m}^2$$
.

Tensione massima:

$$q_{Max} = 9,63 \text{ t/m}^2.$$

Verifica:

$$q_u \cdot b' \cdot L'/N' = 12.516,2x3,51x2,30/25,119 = 4.022 > 2,3$$
 (Verificato).

• Verifica allo scorrimento:

[
$$C_k + (R_z/b'\cdot L')\cdot tg\phi_k$$
]·($b'\cdot L'$) = 105,92 t;
 $R_{xy} = (T_b^2 + T_L^2)^{0.5} = 1,84$ t;
105,92/1,84 = 57 > 1,1 (Verificato).

• Cedimento:

$$I_w = 0.5592 \cdot \ln(L'/b') + 0.82 = 1.06;$$

 $w = q_e \cdot b' \cdot (1 - v^2) \cdot I_w / E_s = 0.009 \text{ cm}$ (Accettabile).

• Rotazioni:

$$\begin{split} I_m &=~5,0773 - 1/1,3132 \cdot (L'/b') = 3,92; \\ tg\theta_L &=~(M_L/L'^2 \cdot b') \cdot [(1 - {v_k}^2)/E_{sk}] \cdot I_m = 0,0004; \\ tg\theta_b &=~(M_b/b'^2 \cdot L') \cdot [(1 - {v_k}^2)/E_{sk}] \cdot I_m = 0,00004; \\ \theta_L &=~~0,000454694 \ \ rad. = ~~0,027^\circ \ \ \ (Accettabile); \\ \theta_b &=~~3,70245E-05 \ \ rad. = ~~0,002^\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{split}$$

Modulo di Sottofondo:

$$k_s = q_{e \text{ Med}} / w = 59.5 \text{ kg/cm}^3.$$

B) $\overline{\text{TORRE-FARO H}} = 15 \text{ m}$

B.1) Geometria (Fig. 2)

Plinto quadrato.

- Larghezza: b = 3,00 m.
- Lunghezza: L = 3,00 m.
- Altezza: H = 2,00 m.
- Profondità d'interramento: t = 2,00 m.

B.2) Azioni

B.2.1) Dalla relazione di calcolo statico (Elaborato R03 di progetto), per le verifiche allo S.L.U., è:

- Carico verticale: N = 105.120 N = 10,719 t;
- Momenti:

$$M_x = 37.810 \text{ N} \cdot \text{m} = 3,856 \text{ t} \cdot \text{m};$$

 $M_v = 103.096 \text{ N} \cdot \text{m} = 10,513 \text{ t} \cdot \text{m};$

• Carichi orizzontali:

$$T_x = 12.000 \text{ N} = 1,224 \text{ t};$$

$$T_y = 844 N = 0.086 t.$$

PLINTO TORRE H = 15 m						
GEOMETRIA						
bx	by	Bx	Ву			
35	35	300	300			
ex	ey	Pilastro	$\beta = 1,15$			
0	0	ınterno				
200						
4						
196						
				•		
σ ₁ 0,077	σ_{2} 0,053	σ ₃ 0,067	σ ₄ 0,044			
	bx 35 ex 0 200 4 196	bx by 35 35 ex ey 0 0 200 4 196	bx by Bx 35 35 300 ex ey Pilastro	bx by Bx By 35 35 300 300 ex ey Pilastro 0 0 $\beta = 1,15$ 200 4 196 σ_1 σ_2 σ_3 σ_4		

Fig. 2: Schema geometrico

B.2.2) Peso proprio plinto

$$P_p = b \cdot L \cdot H \cdot (\gamma_{cls} - \gamma_t) = 3,00x3,00x2,00x(2,5 - 1,7) = 14,4 t.$$

B.2.3) Momenti di trasporto

$$M_{xt} = T_y \cdot H = 0.086x2.00 = 0.172 \text{ t} \cdot \text{m}.$$

$$M_{yt} = T_x \cdot H = 1,224x2,00 = 2,448 \text{ t} \cdot \text{m}.$$

B.2.4) Coefficienti parziali

- (A1) $\gamma_{Qi} = 1.5$.
- $(M1) \gamma_M = 1.0.$
- (R3) Capacità portante $\gamma_R = 2,3$; Scorrimento $\gamma_R = 1,1$.

B.3) Rotatoria C

B.3.1) Azioni totali

• Carico verticale:

$$N' = N + P_p = 10,719 + 14,4 = 25,119 t.$$

Momentis

$$\begin{split} M_x{}' &= (M_x + M_{xt}) \cdot \gamma_{Qi} = (3,856 + 0,172)x1,5 = 6,042 \text{ t·m}; \\ M_y{}' &= (M_y + M_{yt}) \cdot \gamma_{Qi} = (10,513 + 2,448)x1,5 = 19,442 \text{ t·m}. \end{split}$$

• Carichi orizzontali:

$$\begin{split} T_{x}{'} &= T_{x}{\cdot}\gamma_{Qi} = 1{,}224x1{,}5 = 1{,}836\ t; \\ T_{y}{'} &= T_{y}{\cdot}\gamma_{Qi} = 0{,}086x1{,}5 = 0{,}129\ t. \end{split}$$

B.3.2) Verifiche

• Dati di ingresso:

$\gamma_1 =$	$1,7 \text{ t/m}^3$	$\gamma_2 =$	$1,7 \text{ t/m}^3$	C =	$5,5 \text{ t/m}^2$
φ=	34°	ν=	0,35	$E_s =$	15.000 t/m^2
b =	3,00 m	L =	3,00 m	t =	2,00 m
N =	25,119 t	$T_b =$	1,836 t	$T_L =$	0,129 t
$M_b =$	6,042 t·m	$M_L =$	19,442 t⋅m	$e_b =$	0,24 m
$e_L =$	0,77 m	b' =	2,52 m	L' =	1,45 m

• Calcolo:

$$N_c = 42,16$$
 $N_q = 29,44$ $N_Y = 41,06$ $\zeta_c = 2,21$ $\zeta_q = 2,17$ $\zeta_{Y} = 0,31$ $\zeta_{Ci} = 0,94$ $\zeta_{Qi} = 0,95$ $\zeta_{Yi} = 0,91$

• Verifica Capacità portante ultima netta (soluzione Terzaghi):

$$q_u = C \cdot N_c \cdot \zeta_c \cdot \zeta_{ci} + \gamma_1 \cdot t \cdot N_q \cdot \zeta_q \cdot \zeta_{qi} + \gamma_2 \cdot b' \cdot N_\gamma \cdot \zeta_Y \cdot \zeta_{\gamma i} / 2 - \gamma_1 \cdot t = 710,7 t / m^2.$$

Tensione media:

$$q_{e Med} = 6.87 \text{ t/m}^2$$
.

Tensione massima:

$$q_{Max} = 26,36 \text{ t/m}^2.$$

Verifica:

$$q_u \cdot b' \cdot L'/N' = 710,7x2,52x1,45/25,119 = 103 > 2,3$$
 (Verificato).

• Verifica allo scorrimento:

$$\begin{split} [C_k + (R_z/b'\cdot L')\cdot tg\phi_k]\cdot (b'\cdot L') &= 30,5 \ t; \\ R_{xy} &= (T_b^{\ 2} + T_L^{\ 2})^{0.5} &= \ 1,84 \ t; \end{split}$$

$$30,5/1,84 = 16 > 1,1$$
 (Verificato).

• Cedimento:

$$\begin{split} I_w &= 0.5592 \cdot ln(L'/b') + 0.82 = 1.13; \\ w &= q_e \cdot b' \cdot (1 - v^2) \cdot I_w / E_s = 0.11 \text{ cm} \quad \text{(Accettabile)}. \end{split}$$

• Rotazioni:

$$\begin{split} I_m = & \ 5,0773 - 1/1,3132 \cdot (L'/b') = 3,76; \\ tg\theta_L = & \ (M_L/L'^2 \cdot b') \cdot [(1 - \nu_k^2)/E_{sk}] \cdot I_m = 0,005; \\ tg\theta_b = & \ (M_b/b'^2 \cdot L') \cdot [(1 - \nu_k^2)/E_{sk}] \cdot I_m = 0,0003; \\ \theta_L = & \ 0,005104185 \ rad. = \ 0,29^\circ \ (Accettabile); \\ \theta_b = & \ 0,000303829 \ rad. = \ 0,02^\circ \ (Accettabile). \end{split}$$

• Modulo di Sottofondo:

$$k_s = q_{e \text{ Med}} / w = 13.3 \text{ kg/cm}^3.$$

IL PROGETTISTA